Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

October 20, 2023

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 1/128

Table of Contents

- 1 The natural logarithmic function: differentiation
- 2 The natural logarithmic function: integration
 - 3 Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than e and applications
- Indeterminate forms and L'Hôpital's Rule
 - 7 Inverse trigonometric functions: differentiation
- 8 Inverse trigonometric functions: integration

Szu-Chi Chung (NSYSU)

Table of Contents

The natural logarithmic function: differentiation

- 2 The natural logarithmic function: integration
- 3 Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than *e* and applications
- Indeterminate forms and L'Hôpital's Rule
- Inverse trigonometric functions: differentiation
- Inverse trigonometric functions: integration

The natural logarithmic function

• The General Power Rule

$$\int x^n \, \mathrm{d}x = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$

has an important disclaimer—it doesn't apply when n = -1. Consequently, we have not yet found an antiderivative for the function f(x) = 1/x.

- In fact, it is neither algebraic nor trigonometric, but falls into a new class of functions called logarithmic functions.
- This particular function is the natural logarithmic function.

Definition 5.1 (The natural logarithmic function)

The natural logarithmic function is defined by

$$\ln x = \int_1^x \frac{1}{t} \, \mathrm{d}t, \quad x > 0.$$

The domain of the natural logarithmic function is the set of all positive real numbers.

- From this definition, you can see that ln x is positive for x > 1 and negative for 0 < x < 1.
- Moreover, ln(1) = 0, because the upper and lower limits of integration are equal when x = 1.

• To sketch the graph of $y = \ln x$, you can think of the natural logarithmic function as an antiderivative given by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}$$

Szu-Chi Chung (NSYSU)

- Figure 2 is a computer-generated graph, called a slope (or direction) field, showing small line segments of slope 1/x.
- The graph of $y = \ln x$ is the one that passes through the point (1, 0).

Figure 2: Each small line segment has a slope of $\frac{1}{x}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem 5.1 (Properties of the natural logarithmic function)

The natural logarithmic function has the following properties.

- The domain is $(0,\infty)$ and the range is $(-\infty,\infty)$.
- Interpretation of the second state of the s
- S The graph is concave downward.

Figure 3: The natural logarithmic function is increasing, and its graph is concave downward.

Szu-Chi Chung (NSYSU)	Chapter 5 Logarithmic, Exponential, and Oth	October 20, 2023	8 / 128

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem 5.2 (Logarithmic properties)

If a and b are positive numbers and n is rational, then the following properties are true.

- **1** $\ln(1) = 0$
- $(ab) = \ln a + \ln b$
- $In(a^n) = n \ln a$
- $In \left(\frac{a}{b} \right) = \ln a \ln b$

く 目 ト く ヨ ト く ヨ ト

- When rewriting the logarithmic functions, you must check to see whether the <u>domain</u> of the rewritten function is the same as the domain of the original.
- For instance, the domain of $f(x) = \ln x^2$ is all real numbers except x = 0, and the domain of $g(x) = 2 \ln x$ is all positive real numbers.

Figure 4: Domain of $f(x) = \ln x^2$ and $g(x) = 2 \ln x$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

- It is likely that you have studied logarithms in an algebra course. There, without the benefit of calculus, logarithms would have been defined in terms of a base number.
- For example, common logarithms have a base of 10 since $\log_{10} 10 = 1$.
- The base for the natural logarithm is defined using the fact that the natural logarithmic function is continuous, is one-to-one, and has a range of $(-\infty, \infty)$.
- So, there must be a unique real number x such that $\ln x = 1$.

• This number is denoted by the letter *e*. It can be shown that *e* is irrational and has the following decimal approximation.

 $e \approx 2.71828182846$

Figure 5: *e* is the base for the natural logarithm because $\ln e = 1$.

Definition 5.2 (e)

The letter e denotes the positive real number such that

$$\ln e = \int_1^e \frac{1}{t} \, \mathrm{d}t = 1.$$

• $\ln(e^n) = n \ln e = n(1) = n$, we can evaluate the natural logarithms:

X	$\frac{1}{e^3} \approx 0.050$	$\frac{1}{e^2} \approx 0.135$	$\frac{1}{e} \approx 0.368$	$e^0 = 1$	e pprox 2.718	$e^2 \approx 7.389$
ln x	-3	-2	-1	0	1	2

Figure 6: If $x = e^n$, then $\ln x = n$.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

• Some useful or interesting values related to *e* and ln *x* are listed below.

Example 1 (Evaluating natural logarithmic expressions)

a. $\ln 2 \approx 0.693$ **b.** $\ln 32 \approx 3.466$ **c.** $\ln 0.1 \approx -2.303$

Euler's Formula $e^{ix} = \cos x + i \sin x$

Euler's Identity: One of the most beautiful theorem in mathematics.

$$e^{i\pi} + 1 = 0$$

Szu-Chi Chung (NSYSU)	Chapter 5 Logarithmic, Exponential, and Oth	October 20, 2023	14 / 128
,			,

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The derivative of the natural logarithmic function

- The derivative of the natural logarithmic function is given in Theorem 5.3.
- The first part of the theorem follows from the definition of the natural logarithmic function as an antiderivative.
- The second part of the theorem is simply the Chain Rule version of the first part.

Theorem 5.3 (Derivative of the natural logarithmic function)

Let u be a differentiable function of x. **1.** $\frac{d}{dx} [\ln x] = \frac{1}{x}$, x > 0 **2.** $\frac{d}{dx} [\ln u] = \frac{1}{u} \frac{du}{dx} = \frac{u'}{u}$, u > 0

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

✓ □ → < ⊇ → < ⊇ →
October 20, 2023

Example 2 (Differentiation of logarithmic functions)

- **a.** $\frac{\mathrm{d}}{\mathrm{d}x} \left[\ln(2x) \right]$
- **b.** $\frac{d}{dx}[\ln(x^2+1)]$
- **c.** $\frac{\mathrm{d}}{\mathrm{d}x} [x \ln x]$
- **d.** $\frac{d}{dx} [(\ln x)^3]$

▲欄 ▶ ★ 国 ▶ ★ 国 ▶ 二 国

Example 3 (Logarithmic properties as aids to differentiation)

Differentiate $f(x) = \ln \sqrt{x+1}$.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 17 / 128

イロト 不得 トイヨト イヨト

Example 4 (Logarithmic properties as aids to differentiation)

Differentiate
$$f(x) = \ln \frac{x(x^2+1)^2}{\sqrt{2x^3-1}}$$
.

• Using logarithms as aids in differentiating <u>nonlogarithmic functions</u> is called logarithmic differentiation.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 18 / 128

4 AR N 4 E N 4 E N

Example 5 (Logarithmic differentiation)

Find the derivative of

$$y = \frac{(x-2)^2}{\sqrt{x^2+1}}, \quad x \neq 2.$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 19/128

< □ > < □ > < □ > < □ > < □ > < □ >

э

Szu Chi Chung (NSVSU)	Chapter 5 Logarithmic Exponential and Oth	October 20, 2023	20 / 128
Szu-Chi Chung (NSTSO)	Chapter 5 Logantininc, Exponential, and Oth	October 20, 2023	20/120

・ロト・雪・・雪・・雪・・白・

Theorem 5.4 (Derivative involving absolute value)

If u is a differentiable function of x such that $u \neq 0$, then

$$\frac{\mathrm{d}}{\mathrm{d}x}\,\ln|u|=\frac{u'}{u}.$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 21 / 128

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 6 (Derivative involving absolute value)

Find the derivative of

 $f(x) = \ln |\cos x|.$

< 日 > < 同 > < 三 > < 三 > <

Table of Contents

The natural logarithmic function: differentiation

- 2 The natural logarithmic function: integration
 - 3 Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than *e* and applications
- Indeterminate forms and L'Hôpital's Rule
- Inverse trigonometric functions: differentiation
- Inverse trigonometric functions: integration

Szu-Chi Chung (NSYSU) Ch

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

Log Rule for integration

The differentiation rules

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\ln|x|\right] = \frac{1}{x} \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}x}\left[\ln|u|\right] = \frac{u'}{u}$$

produce the following integration rule.

Theorem 5.5 (Log Rule for integration)

Let *u* be a differentiable function of *x*. **1.** $\int \frac{1}{x} dx = \ln |x| + C$ **2.** $\int \frac{1}{u} du = \ln |u| + C$

Because du = u' dx, the second formula can also be written as

$$\int \frac{u'}{u} \, \mathrm{d}x = \ln |u| + C. \qquad \text{Alternative form of Log Rule}$$

マロト イヨト イヨト ニヨ

Example 1 (Using the Log Rule for integration)

Find $\int \frac{2}{x} dx$

Example 2 (Using the log rule with a change of variables)

Find $\int \frac{1}{4x-1} \, \mathrm{d}x$.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Example 3 (Finding area with the log rule)

Find the area of the region bounded by the graph of $y = \frac{x}{x^2+1}$ the x-axis, and the lines x = 0 and x = 3.

Example 4 (Recognizing quotient forms of the Log Rule)

a.
$$\int \frac{3x^2+1}{x^3+x} \,\mathrm{d}x$$

b.
$$\int \frac{\sec^2 x}{\tan x} \, \mathrm{d}x$$

c.
$$\int \frac{x+1}{x^2+2x} \, \mathrm{d}x$$

d.
$$\int \frac{1}{3x+2} \, \mathrm{d}x$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

A D N A B N A B N A B N

э

• If a rational function has a numerator of degree greater than or equal to that of the denominator, division may reveal a form to which you can apply the Log Rule!

Example 5 (Using long division before integrating)

Find
$$\int \frac{x^2 + x + 1}{x^2 + 1} \, \mathrm{d}x$$
.

Example 6 (Change of variables with the Log Rule)

Find
$$\int \frac{2x}{(x+1)^2} \,\mathrm{d}x$$
.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 29 / 128

イロト イポト イヨト イヨト

э

Guidelines for integration

- Learn a basic list of integration formulas.
- Find an integration formula that resembles all or part of the integrand, and, by <u>trial and error</u>, find a choice of u that will make the integrand conform to the formula.
- If you cannot find a *u*-substitution that works, try altering the integrand. You might try a trigonometric identity, multiplication and division by the same quantity, addition and subtraction of the same quantity, or long division. Be creative!
- (Not for exam) If you have access to computer software that will find antiderivatives symbolically, use it.
- Solution Check your result by differentiating to obtain the original integrand.

Example 7 (u-Substitution and the Log Rule)

Solve the differential equation $\frac{dy}{dx} = \frac{1}{x \ln x}$.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 31/128

イロト イヨト イヨト イヨト 二日

Integrals of trigonometric functions

Example 8 (Using a trigonometric identity)

Find $\int \tan x \, \mathrm{d}x$.

Example 9 (Derivation of the Secant Formula)

Find $\int \sec x \, dx$.

イロト イボト イヨト イヨト

Example 10 (Integrating trigonometric functions)

Evaluate $\int_0^{\pi/4} \sqrt{1 + \tan^2 x} \, \mathrm{d}x$.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 35 / 128

・ロト ・四ト ・ヨト ・ヨト - ヨ

Example 11 (Finding an average value)

Find the average value of $f(x) = \tan x$ on the interval $\left[0, \frac{\pi}{4}\right]$.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 36 / 128

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
Table of Contents

- The natural logarithmic function: differentiation
- 2 The natural logarithmic function: integration
- 3 Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than *e* and applications
- 6 Indeterminate forms and L'Hôpital's Rule
- Inverse trigonometric functions: differentiation
- Inverse trigonometric functions: integration

Inverse functions

The function f(x) = x + 3 from A = {1, 2, 3, 4} to B = {4, 5, 6, 7} can be written as

$$f: \{(1,4), (2,5), (3,6), (4,7)\}.$$

• By interchanging the first and second coordinates of each ordered pair, you can form the inverse function of f. This function is denoted by f^{-1} . It is a function from B to A, and can be written as

$$f^{-1}$$
: {(4,1), (5,2), (6,3), (7,4)}.

• The domain of f is equal to the range of f^{-1} , and vice versa. When you form the composition of f with f^{-1} or the composition of f^{-1} with f, you obtain the identity function.

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$

Definition 5.3 (Inverse function)

A function g is the inverse function of the function f if f(g(x)) = x for each x in the domain of g and g(f(x)) = x for each x in the domain of f. The function g is denoted by f^{-1} (read "f inverse").

Here are some important observations about inverse functions.

- If g is the inverse function of f, then f is the inverse function of g.
- 3 The domain of f^{-1} is equal to the range of f, and the range of f^{-1} is equal to the domain of f.
- A function need not have an inverse function, but if it does, the inverse function is unique!
- You can think of f^{-1} as undoing what has been done by f.
- f(x) = x + c and $f^{-1}(x) = x c$ are inverse functions of each other.
- f(x) = cx and $f^{-1}(x) = \frac{x}{c}$, $c \neq 0$, are inverse functions of each other.

▲■▶ ▲■▶ ▲■▶ = ● のへの

Example 1 (Verifying inverse functions)

Show that the functions are inverse functions of each other.

$$f(x) = 2x^3 - 1$$
 and $g(x) = \sqrt[3]{\frac{x+1}{2}}$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 41 / 128

(4) (日本)

Figure 7: $f(x) = 2x^3 - 1$ and $g(x) = \sqrt[3]{\frac{x+1}{2}}$ are inverse functions of each other.

- In Figure 7, the graphs of f and g = f⁻¹ appear to be mirror images of each other with respect to the line y = x.
- The graph of f^{-1} is a reflection of the graph of f in the line y = x!
- The idea of a reflection of the graph of f in the line y = x is generalized in the following theorem.

Theorem 5.6 (Reflective property of inverse functions)

The graph of f contains the point (a, b) if and only if the graph of f^{-1} contains the point (b, a).

Figure 8: The graph of f^{-1} is a reflection of the graph of f in the line y = x.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

43 / 128

Existence of an inverse function

- Not every function has an inverse function, and Theorem 5.6 suggests a graphical test for those that do—the Horizontal Line Test for an inverse function.
- This test states that a function *f* has an inverse function if and only if every horizontal line intersects the graph of *f* at most once.

Figure 9: If a horizontal line intersects the graph of f twice, then f is not one-to-one.

Szu-Chi Chung (NSYSU)	Chapter 5 Logarithmic, Exponential, and Oth	October 20, 2023	44 / 128

(日)

Theorem 5.7 (The existence of an inverse function)

- **1** A function has an inverse function if and only if it is one-to-one.
- If f is strictly monotonic on its entire domain, then it is one-to-one and therefore has an inverse function.

Example 2 (The existence of an inverse function)

Which of the functions has an inverse function? **a.** $f(x) = x^3 + x - 1$ **b.** $f(x) = x^3 - x + 1$

(a) Because $f(x) = x^3 + x - 1$ is increasing over its entire domain, it has an inverse function.

(b) Because $f(x) = x^3 - x + 1$ is not one-to-one, it does not have an inverse function.

Figure 10: The existence of an inverse function.

• The following guidelines suggest a procedure for finding an inverse function.

Szu-Chi Chung (NSYSU)

October 20, 2023

Guidelines for finding an inverse function

- Use Theorem 5.7 to determine whether the function given by y = f(x) has an inverse function.
- Solve for x as a function of $y : x = g(y) = f^{-1}(y)$.
- So Interchange x and y. The resulting equation is $y = f^{-1}(x)$.
- Define the domain of f^{-1} as the range of f.
- Solution Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

くほう イヨン イヨン 二日

Example 3 (Finding an inverse function)

Find the inverse function of $f(x) = \sqrt{2x - 3}$.

イロト 不得 トイヨト イヨト 二日

Figure 11: The domain of $f^{-1}(x) = \frac{x^2+3}{2}$, $[0, \infty)$ is the range of $f(x) = \sqrt{2x-3}$.

- Suppose you are given a function that is <u>not one-to-one</u> on its domain.
- By <u>restricting the domain</u> to an interval on which the function is strictly monotonic, you can conclude that the new function is one-to-one on the restricted domain.

Example 4 (Testing whether a function is one-to-one)

Show that the sine function

$$f(x) = \sin x$$

is not one-to-one on the entire real line. Then show that $[-\pi/2, \pi/2]$ is the largest interval, centered at the origin, on which f is strictly monotonic.

Figure 12: $f(x) = \sin x$ is one-to-one on the interval $[-\pi/2, \pi/2]$.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

∢ ≣ ≯

2

52 / 128

The next two theorems discuss the derivative of an inverse function.

Theorem 5.8 (Continuity and differentiability of inverse functions)

Let f be a function whose domain is an interval I. If f has an inverse function, then the following statements are true.

- If f is continuous on its domain, then f^{-1} is continuous on its domain.
- **2** If f is increasing on its domain, then f^{-1} is increasing on its domain.
- § If f is decreasing on its domain, then f^{-1} is decreasing on its domain.
- If f is differentiable on an interval containing c and f'(c) ≠ 0, then f⁻¹ is differentiable at f(c).

Theorem 5.9 (The derivative of an inverse function)

Let f be a function that is differentiable on an interval I. If f has an inverse function g, then g is differentiable at any x for which $f'(g(x)) \neq 0$. Moreover,

$$g'(x) = \frac{1}{f'(g(x))}, \quad f'(g(x)) \neq 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example 5 (Evaluating the derivative of an inverse function)

Let
$$f(x) = \frac{1}{4}x^3 + x - 1$$
.
a. What is the value of $f^{-1}(x)$ when $x = 3$?
b. What is the value of $(f^{-1})'(x)$ when $x = 3$?

・ 何 ト ・ ヨ ト ・ ヨ ト

э

Figure 13: The graphs of the inverse functions f and f^{-1} have reciprocal slopes at points (a, b) and (b, a).

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

, 2023 56

56 / 128

Example 6 (Graphs of inverse functions have reciprocal slopes)

Let $f(x) = x^2$ (for $x \ge 0$) and let $f^{-1}(x) = \sqrt{x}$. Show that the slopes of the graphs of f and f^{-1} are reciprocals at each of the following points. **a.** (2,4) and (4,2) **b.** (3,9) and (9,3)

くぼう くさう くさう しき

Figure 14: At (0,0), the derivative of $f(x) = x^2$ is 0, and the derivative of $f^{-1}(x) = \sqrt{x}$ does not exist.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

2023 58

58 / 128

Table of Contents

- 1 The natural logarithmic function: differentiation
- 2 The natural logarithmic function: integration
- Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than e and applications
- 6 Indeterminate forms and L'Hôpital's Rule
- Inverse trigonometric functions: differentiation
- Inverse trigonometric functions: integration

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

The natural exponential function

- The function $f(x) = \ln x$ is increasing on its entire domain, and therefore it has an inverse function f^{-1} .
- The domain of f^{-1} is the set of all reals, and the range is the set of positive reals, as shown in Figure 15.

Figure 15: The inverse function of the natural logarithmic function is the natural exponential function.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

60 / 128

• So, for any real number x,

$$f(f^{-1}(x)) = \ln[f^{-1}(x)] = x.$$
 x is any real number

• If x happens to be rational, then

$$\ln(e^x) = x \ln e = x(1) = x.$$
 x is a rational number

 Because the natural logarithmic function is one-to-one, you can conclude that f⁻¹(x) and e^x agree for rational values of x. The following definition extends to include all real values of x.

Definition 5.4 (The natural exponential function)

The inverse function of the natural logarithmic function $f(x) = \ln x$ is called the natural exponential function and is denoted by

$$f^{-1}(x)=e^x.$$

That is $y = e^x$ if and only if $x = \ln y$.

• The inverse relationship between the natural logarithmic function and the natural exponential function can be summarized as follows.

$$\ln(e^x) = x$$
 and $e^{\ln x} = x$ Inverse relationship

Example 1 (Solving an exponential equation)

Solve $7 = e^{x+1}$.

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Example 2 (Solving a logarithmic equation (exponentiate))

Solve $\ln(2x - 3) = 5$.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Theorem 5.10 (Operations with exponential functions)

Let a and b be any real numbers.
e^ae^b = e^{a+b}
e^a/_{a^b} = e^{a-b}

- An inverse function f^{-1} shares many properties with f.
- So, the natural exponential function inherits the following properties from the natural logarithmic function (see Figure 16).

く 目 ト く ヨ ト く ヨ ト

Properties of the natural exponential function

- **1** The domain of $f(x) = e^x$ is $(-\infty, \infty)$, and the range is $(0, \infty)$.
- 2 The function $f(x) = e^x$ is continuous, increasing, and one-to-one on its entire domain.
- Solution The graph of $f(x) = e^x$ is concave upward on its entire domain.

$$Iim_{x\to-\infty} e^x = 0 \text{ and } Iim_{x\to\infty} e^x = \infty.$$

Figure 16: The natural exponential function is increasing, and its graph is concave upward. October 20, 2023 65 / 128

Szu-Chi Chung (NSYSU)

Derivatives of exponential functions

 One of the most intriguing (and useful) characteristics of the natural exponential function is that it is its own derivative.

Figure 17: source: https://www.pinterest.com/pin/548454060851043602/

Theorem 5.11 (Derivatives of the natural exponential function)

Let u be a differentiable function of x.

$$\begin{array}{l} \mathbf{0} \quad \frac{\mathrm{d}}{\mathrm{d}x} \left[e^{x} \right] = e^{x} \\ \mathbf{0} \quad \frac{\mathrm{d}}{\mathrm{d}x} \left[e^{u} \right] = e^{u} \frac{\mathrm{d}u}{\mathrm{d}x} \end{array}$$

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

→ ∃ → October 20, 2023

- ∢ ⊒ →

< 17 ▶

66 / 128

Example 3 (Differentiating exponential functions)

a.
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[e^{2x-1} \right]$$

b.
$$\frac{d}{dx} [e^{-3/x}]$$

c. $\frac{\mathrm{d}}{\mathrm{d}x} [x^2 e^x]$

d.
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{e^{3x}}{e^x + 1} \right]$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 67 / 128

イロト イポト イヨト イヨト

3

Example 4 (Locating relative extrema)

Find the relative extrema of $f(x) = xe^x$.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 68 / 128

イロト イポト イヨト イヨト

3

Example 5 (Finding an equation of a tangent line)

Find an equation of the tangent line to the graph of $f(x) = 2 + e^{1-x}$ at the point (1,3).

- 4 目 ト 4 日 ト

Integrals of exponential functions

Theorem 5.12 (Integration rules for exponential functions)

Let u be a differentiable function of x. 1. $\int e^x dx = e^x + C$ 2. $\int e^u du = e^u + C$

Example 7 (Integrating exponential functions)

Find $\int e^{3x+1} \, \mathrm{d}x$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Example 8 (Integrating exponential functions)

Find
$$\int 5xe^{-x^2} dx$$
.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 71/128

< □ > < 同 > < 回 > < 回 > < 回 >

э

Example 9 (Integrating exponential functions)

a.
$$\int \frac{e^{1/x}}{x^2} dx$$
 b. $\int \sin x e^{\cos x} dx$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 72 / 128

э

イロト イヨト イヨト ・
Example 10 (Finding areas bounded by exponential functions)

a.
$$\int_0^1 e^{-x} dx$$
 b. $\int_0^1 \frac{e^x}{1+e^x} dx$ **c.** $\int_{-1}^0 [e^x \cos(e^x)] dx$

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

Table of Contents

- The natural logarithmic function: differentiation
- 2 The natural logarithmic function: integration
- 3 Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than e and applications
- Indeterminate forms and L'Hôpital's Rule
- Inverse trigonometric functions: differentiation
- Inverse trigonometric functions: integration

• The <u>base</u> of the natural exponential function is *e*. This "natural" base can be used to assign a meaning to a general base *a*.

Definition 5.5 (Exponential function to base a)

If a is a positive real number $(a \neq 1)$ and x is any real number, then the exponential function to the base a is denoted by a^x and is defined by

$$a^{x} = e^{(\ln a)x}$$

If a = 1, then $y = 1^x = 1$ is a constant function.

く 目 ト く ヨ ト く ヨ ト

- These functions obey the usual laws of exponents. For instance, here are some familiar properties.
 - 1. $a^{0} = 1$ 3. $\frac{a^{x}}{a^{y}} = a^{x-y}$ 4. $(a^{x})^{y} = a^{xy}$
- When modeling the half-life of a radioactive sample, it is convenient to use ¹/₂ as the base of the exponential model. (Half-life is the number of years required for half of the atoms in a sample of radioactive material to decay.)

Definition 5.6 (Logarithmic function to base a)

If a is a positive real number $(a \neq 1)$ and x is any positive real number, then the logarithmic function to the base a is denoted by $\log_a x$ and is defined as

$$\log_a x = \frac{1}{\ln a} \ln x.$$

 Logarithmic functions to the base *a* have properties similar to those of the natural logarithmic function. *a* > 0, *a* ≠ 1, *x*, *y* > 0

77 / 128

• From the definitions of the exponential and logarithmic functions to the base *a*, it follows that $f(x) = a^x$ and $g(x) = \log_a x$ are inverse functions of each other.

• The logarithmic function to the base 10 is called the <u>common logarithmic function</u>. So, for common logarithms, $y = 10^x$ if and only if $x = \log_{10} y$.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

Example 2 (Bases other than *e*)

Solve for x in each equation. **a.**
$$3^x = \frac{1}{81}$$
 b. $\log_2 x = -4$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 79 / 128

(日)

Ξ.

- To differentiate exponential and logarithmic functions to other bases, you have three options:
 - (1) use the definitions of a^x and $\log_a x$ and differentiate using the rules for the natural exponential and logarithmic functions,
 - (2) use logarithmic differentiation, or
 - (3) use the following differentiation rules for bases other than e.

Theorem 5.13 (Derivatives for bases other than e)

Let a be a positive real number $(a \neq 1)$ and let u be a differentiable function of x. 1. $\frac{d}{dx}[a^x] = (\ln a)a^x$ 3. $\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a)x}$ 4. $\frac{d}{dx}[\log_a u] = \frac{1}{(\ln a)u}\frac{du}{dx}$

Example 3 (Differentiating functions to other bases)

Find the derivative of each function.

a. $y = 2^x$ **b.** $y = 2^{3x}$ **c.** $y = \log_{10} \cos x$ **d.** $y = \log_3 \frac{\sqrt{x}}{x+5}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- Occasionally, an integrand involves an exponential function to a base other than *e*. When this occurs, there are two options:
 - convert to base e using the formula $a^{x} = e^{(\ln a)x}$ and then integrate, or
 integrate directly, using the integration formula

$$\int a^{x} \, \mathrm{d}x = \left(\frac{1}{\ln a}\right) a^{x} + C.$$

Szu-Chi Chung (NSYSU)

October 20, 2023

Example 4 (Integrating an exponential function to another base)

Find $\int 2^x dx$.

Theorem 5.14 (The Power Rule for real exponents)

Let n be any real number and let u be a differentiable function of x. a) $\frac{d}{dx}[x^n] = nx^{n-1}$ a) $\frac{d}{dx}[u^n] = nu^{n-1}\frac{du}{dx}$

ヘロト 不得 と 不良 と 不良 とうき

Example 5 (Comparing variables and constants)

a.
$$\frac{d}{dx} [e^e]$$

b. $\frac{d}{dx} [e^x]$
c. $\frac{d}{dx} [x^e]$
d. $y = x^x$

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Applications of exponential functions

- Suppose *P* dollars is deposited in an account at an annual interest rate *r* (in decimal form). If interest accumulates in the account, what is the balance in the account at the end of 1 year?
- The answer depends on the number of times *n* the interest is compounded according to the formula

$$A=P\left(1+\frac{r}{n}\right)^n.$$

• For instance, the result for a deposit of \$1000 at 8% interest compounded *n* times a year is shown in the table.

n	A
1	\$1080.00
2	\$1081.60
4	\$1082.33
12	\$1083.00
365	\$1083.28

• As *n* increases, the balance *A* approaches a limit. To develop this limit, use the following theorem.

Theorem 5.15 (A limit involving e)

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \left(\frac{x+1}{x} \right)^x = e$$

To test the reasonableness of this theorem, try evaluating
 [(x + 1)/x]^x for several values of x, as shown in the table.

x	$\left(\frac{x+1}{x}\right)^x$
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827
1,000,000	2.71828

October 20, 2023

- Now, let's take another look at the formula for the balance A in an account in which the interest is compounded n times per year.
- By taking the limit as *n* approaches infinity, you obtain

$$A = \lim_{n \to \infty} P\left(1 + \frac{r}{n}\right)^n = P \lim_{n \to \infty} \left[\left(1 + \frac{1}{n/r}\right)^{n/r} \right]^r$$
$$= P \left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \right]^r = Pe^r.$$

• This limit produces the balance after 1 year of continuous compounding. So, for a deposit of 1000 at 8% interest compounded continuously, the balance at the end of 1 year would be

$$A = 1000e^{0.08} \approx$$
\$1083.29.

Table of Contents

- The natural logarithmic function: differentiation
- 2 The natural logarithmic function: integration
- 3 Inverse functions
- 4 Exponential functions: differentiation and integration
- 5 Bases other than e and applications
- Indeterminate forms and L'Hôpital's Rule
 - 7 Inverse trigonometric functions: differentiation
 - Inverse trigonometric functions: integration

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

Indeterminate forms

- The forms 0/0 and ∞/∞ are called <u>indeterminate</u> because they do not guarantee that a limit exists, nor do they indicate what the limit is, if one does exist.
- When you encountered one of these <u>indeterminate forms</u> earlier in the text, you attempted to rewrite the expression by using various algebraic techniques.

く 目 ト く ヨ ト く ヨ ト

• You can extend these algebraic techniques to find limits of transcendental functions. For instance, the limit

$$\lim_{x\to 0}\frac{e^{2x}-1}{e^x-1}$$

produces the indeterminate form 0/0.

• Factoring and then dividing produces

$$\lim_{x \to 0} \frac{e^{2x} - 1}{e^x - 1} = \lim_{x \to 0} \frac{(e^x + 1)(e^x - 1)}{e^x - 1} = \lim_{x \to 0} (e^x + 1) = 2.$$

• However, not all indeterminate forms can be evaluated by algebraic manipulation. This is often true when both algebraic and transcendental functions are involved. For instance, the limit

$$\lim_{x\to 0}\frac{e^{2x}-1}{x}$$

produces the indeterminate form 0/0.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 91/128

• Rewriting the expression to obtain

$$\lim_{x \to 0} \left(\frac{e^{2x}}{x} - \frac{1}{x} \right)$$

merely produces another indeterminate form, $\infty - \infty$.

• You could use technology to estimate the limit, as shown below. From the table and the graph, the limit appears to be 2.

x	-1	-0.1	-0.01	-0.001	0	0.001	0.01	0.1	1
$\frac{e^{2x}-1}{x}$	0.865	1.813	1.980	1.998	?	2.002	2.020	2.214	6.389

L'Hôpital's Rule

- To find the limit illustrated above, you can use a theorem called <u>L'Hôpital's Rule</u>. This theorem states that under certain conditions the limit of the quotient f(x)/g(x) is determined by the limit of the quotient of the derivatives $\frac{f'(x)}{g'(x)}$.
- To prove this theorem, you can use a more general result called the <u>Extended Mean Value Theorem</u>.

Theorem 5.16 (The Extended Mean Value Theorem)

If f and g are differentiable on an open interval (a, b) and continuous on [a, b] such that $g'(x) \neq 0$ for any x in (a, b), then there exists a point c in (a, b) such that

$$\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}.$$

Theorem 5.17 (L'Hôpital's Rule)

Let f and g be functions that are differentiable on an open interval (a, b) containing c, except possibly at c itself. Assume that $g'(x) \neq 0$ for all x in (a, b), except possibly at c itself. If the limit of f(x)/g(x) as x approaches c produces the indeterminate form 0/0, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

provided the limit on the right exists (or is infinite). This result also applies if the limit of f(x)/g(x) as x approaches c produces anyone of the indeterminate forms $\infty/\infty, (-\infty)/\infty, \infty/(-\infty)$ or $(-\infty)/(-\infty)$.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Example 1 (Indeterminate form 0/0)

Evaluate
$$\lim_{x\to 0} \frac{e^{2x}-1}{x}$$
.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 95 / 128

イロト イボト イヨト イヨト

3

Example 2 (Indeterminate form $\frac{\infty}{\infty}$)

Evaluate
$$\lim_{x\to\infty} \frac{\ln x}{x}$$
.

Example 3 (Applying L'Hôpital's Rule more than once)

Evaluate $\lim_{x\to -\infty} \frac{x^2}{e^{-x}}$.

イロト イヨト イヨト イヨト 二日

Example 4 (Indeterminate form $0 \cdot \infty$)

Evaluate $\lim_{x\to\infty} e^{-x}\sqrt{x}$.

イロト イポト イヨト イヨト

3

Example 5 (Indeterminate form 1^{∞})

Evaluate $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.

イロト イポト イヨト イヨト

э

Figure 19: The limit of $[1 + (1/x)]^x$ as x approaches infinity is e.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

< □ > < □ > < □ >
 October 20, 2023

2023 99

99/128

Example 6 (Indeterminate form 0^0)

Find $\lim_{x\to 0^+} (\sin x)^x$.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 100 / 128

イロト イポト イヨト イヨト

Ξ.

Example 7 (Indeterminate form $\infty - \infty$)

Evaluate
$$\lim_{x\to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1}\right)$$
.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 101 / 128

イロト イボト イヨト イヨト

3

• The forms 0/0, ∞/∞ , $\infty - \infty$, $0 \cdot \infty$, 0^0 , 1^∞ , and ∞^0 have been identified as indeterminate. There are similar forms that you should recognize as <u>determinate</u>.

$\infty = \infty + \infty$	$ ightarrow\infty$	Limit is positive infinity
$-\infty-\infty$	$\rightarrow -\infty$	Limit is negative infinity
0^∞	ightarrow 0	Limit is zero
$0^{-\infty}$	$ ightarrow\infty$	Limit is positive infinity

- As a final comment, remember that L'Hôpital's Rule can be applied only to quotients leading to the indeterminate forms 0/0 and ∞/∞.
- For instance, the following application of L'Hôpital's Rule is incorrect.

Table of Contents

- The natural logarithmic function: differentiation
- 2 The natural logarithmic function: integration
- 3 Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than *e* and applications
- Indeterminate forms and L'Hôpital's Rule
 - Inverse trigonometric functions: differentiation
- Inverse trigonometric functions: integration

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

- None of the six basic trigonometric functions has an inverse function. This statement is true because all six trigonometric functions are periodic and therefore are not one-to-one.
- In this section you will examine these six functions to see whether their domains can be redefined in such a way that they will have inverse functions on the restricted domains.
- Under suitable restrictions, each of the six trigonometric functions is one-to-one and so has an inverse function, as shown in the following definition.

Function	Domain	Range
$y = \arcsin x$ iff $\sin y = x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$y = \arccos x$ iff $\cos y = x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = \arctan x$ iff $\tan y = x$	$-\infty < x < \infty$	$-rac{\pi}{2} < y < rac{\pi}{2}$
$y = \operatorname{arccot} x \text{ iff } \operatorname{cot} y = x$	$-\infty < x < \infty$	$0 < y < \pi$
$y = \operatorname{arcsec} x$ iff $\operatorname{sec} y = x$	$ x \ge 1$	$0\leq y\leq \pi$, $y eq rac{\pi}{2}$
$y = \operatorname{arccsc} x$ iff $\operatorname{csc} y = x$	$ x \ge 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}, \ y \ne 0$

• The graphs of the six inverse trigonometric functions are shown in Figure 20.

Figure 20: Six inverse trigonometric functions.

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

✓ □ → < □ → < □ →
 October 20, 2023

Example 1 (Evaluating inverse trigonometric functions)

Evaluate each function.

a. $\operatorname{arcsin}\left(-\frac{1}{2}\right)$ **b.** $\operatorname{arccos} 0$ **c.** $\operatorname{arctan} \sqrt{3}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Inverse functions have the properties

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

- When applying these properties to inverse trigonometric functions, remember that the trigonometric functions have inverse functions only in restricted domains.
- For x-values outside these domains, these two properties do not hold.
- For example, $\arcsin(\sin \pi)$ is equal to 0, not π .

Example 2 (Solving an equation)

$$\arctan(2x-3) = \frac{\pi}{4}$$

Example 3 (Using right triangles)

a. Given $y = \arcsin x$, where $0 < y < \pi/2$, find $\cos y$. **b.** Given $y = \operatorname{arcsec}(\sqrt{5}/2)$, find $\tan y$.

Figure 21: Using right triangles.

æ

Derivatives of inverse trigonometric functions

- The derivative of the transcendental function $f(x) = \ln x$ is the algebraic function f'(x) = 1/x.
- You will now see that the derivatives of the inverse trigonometric functions also are algebraic!

Theorem 5.18 (Derivatives of inverse trigonometric functions)

Let u be a differentiable function of x.

$$\frac{\mathrm{d}}{\mathrm{d}x} [\operatorname{arcsin} u] = \frac{u'}{\sqrt{1 - u^2}} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x} [\operatorname{arccos} u] = \frac{-u'}{\sqrt{1 - u^2}}$$
$$\frac{\mathrm{d}}{\mathrm{d}x} [\operatorname{arctan} u] = \frac{u'}{1 + u^2} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x} [\operatorname{arccot} u] = \frac{-u'}{1 + u^2}$$
$$\frac{\mathrm{d}}{\mathrm{d}x} [\operatorname{arcsec} u] = \frac{u'}{|u|\sqrt{u^2 - 1}} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x} [\operatorname{arccsc} u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

112 / 128

Example 4 (Differentiating inverse trigonometric functions)

a. $\frac{\mathrm{d}}{\mathrm{d}x} [\operatorname{arcsin}(2x)]$

b. $\frac{\mathrm{d}}{\mathrm{d}x} [\arctan(3x)]$

c. $\frac{\mathrm{d}}{\mathrm{d}x} \left[\arcsin \sqrt{x} \right]$

d. $\frac{\mathrm{d}}{\mathrm{d}x}$ [arcsec e^{2x}]

Example 5 (A derivative that can be simplified)

Find the derivative of $y = \arcsin x + x\sqrt{1 - x^2}$

イロト 不得 トイヨト イヨト

Review of basic differentiation rules

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

< ∃⇒

Table of Contents

- The natural logarithmic function: differentiation
- 2 The natural logarithmic function: integration
- 3 Inverse functions
- Exponential functions: differentiation and integration
- 5 Bases other than *e* and applications
- Indeterminate forms and L'Hôpital's Rule
- Inverse trigonometric functions: differentiation
- Inverse trigonometric functions: integration

Integrals involving inverse trigonometric functions

- The derivatives of the six inverse trigonometric functions fall into three pairs. In each pair, the derivative of one function is the negative of the other.
- For example

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\arcsin x\right] = \frac{1}{\sqrt{1-x^2}}$$

and

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\arccos x\right] = -\frac{1}{\sqrt{1-x^2}}$$

• When listing the antiderivative that corresponds to each of the inverse trigonometric functions, you need to use only one member from each pair. It is conventional to use $\arcsin x$ as the antiderivative of $1/\sqrt{1-x^2}$, rather than $-\arccos x$.

Identities involving inverse trigonometric functions

$$\begin{aligned} & \arccos x + \arccos x = \frac{1}{2}\pi, \quad |x| \leq 1 \\ & \arctan x + \arccos x = \frac{1}{2}\pi, \quad |x| \in \mathbb{R} \\ & \arccos x + \arccos x = \frac{1}{2}\pi, \quad |x| \geq 1 \end{aligned}$$

Theorem 5.19 (Integrals involving inverse trigonometric functions)

Let u be a differentiable function of x, and let
$$a > 0$$
.
1. $\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$
2. $\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$
3. $\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$

Szu-Chi Chung (NSYSU)

October 20, 2023

< 行

4 E b

Example 1 (Integration with inverse trigonometric functions)

a.
$$\int \frac{\mathrm{d}x}{\sqrt{4-x^2}}$$

b.
$$\int \frac{dx}{2+9x^2}$$

c.
$$\int \frac{\mathrm{d}x}{x\sqrt{4x^2-9}}$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 119 / 128

< □ > < □ > < □ > < □ > < □ > < □ >

э

Example 2 (Integration by substitution)

Find
$$\int \frac{\mathrm{d}x}{\sqrt{e^{2x}-1}}$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 120 / 128

イロト イポト イヨト イヨト

Example 3 (Rewriting as the sum of two quotients)

Find
$$\int \frac{x+2}{\sqrt{4-x^2}} \, \mathrm{d}x$$
.

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 121 / 128

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

- Completing the square helps when quadratic functions are involved in the integrand.
- For example, the quadratic $x^2 + bx + c$ can be written as the difference of two squares by adding and subtracting $(b/2)^2$.

$$x^{2} + bx + c = x^{2} + bx + \left(\frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$
$$= \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023

Example 4 (Completing the square)

Find
$$\int \frac{\mathrm{d}x}{x^2 - 4x + 7}$$

Szu-Chi Chung (NSYSU) Chapter 5 Logarithmic, Exponential, and Oth October 20, 2023 123/128

イロト イポト イヨト イヨト

э

Example 5 (Completing the square (negative leading coefficient))

Find the area of the region bounded by the graph of $f(x) = \frac{1}{\sqrt{3x-x^2}}$ the *x*-axis, and the lines $x = \frac{3}{2}$ and $x = \frac{9}{4}$.

- 本語 医 本 臣 医 一 臣

Figure 22: The area of the region bounded by the graph of f, the x-axis, and the lines $x = \frac{3}{2}$ and $x = \frac{9}{4}$ is $\pi/6$.

Table 2: Basic integration rules (a > 0)

1. $\int kf(u) du = k \int f(u) du$	2. $\int [f(u) \pm g(u)] \mathrm{d}u = \int f(u) \mathrm{d}u \pm \frac{1}{2} \int f(u) \mathrm{d}u = \frac{1}{2} \int f(u) \mathrm{d}u $
	$\int g(u) \mathrm{d}u$
3. $\int \mathrm{d}u = u + C$	4. $\int u^n du = \frac{u^{n+1}}{n+1} + C, n \neq -1$
5. $\int \frac{\mathrm{d}u}{u} = \ln u + C$	6. $\int e^u \mathrm{d}u = e^u + C$
7. $\int a^{u} du = \left(\frac{1}{\ln a}\right) a^{u} + C$	8. $\int \sin u \mathrm{d}u = -\cos u + C$
9. $\int \cos u \mathrm{d}u = \sin u + C$	10. $\int \tan u \mathrm{d}u = -\ln \cos u + C$
11. $\int \cot u \mathrm{d}u = \ln \sin u + C$	12. $\int \sec u \mathrm{d}u = \ln \sec u + \tan u + C$
13. $\int \csc u \mathrm{d}u = -\ln \csc u + \cot u + C$	14. $\int \sec^2 u \mathrm{d}u = \tan u + C$
15. $\int \csc^2 u \mathrm{d}u = -\cot u + C$	16. $\int \sec u \tan u \mathrm{d}u = \sec u + C$
17. $\int \csc u \cot u \mathrm{d}u = -\csc u + C$	18. $\int \frac{\mathrm{d}u}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$
19. $\int \frac{\mathrm{d}u}{a^2+u^2} = \frac{1}{a}\arctan\frac{u}{a} + C$	20. $\int \frac{\mathrm{d}u}{u\sqrt{u^2-a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{ u }{a} + C$

Szu-Chi Chung (NSYSU)

Chapter 5 Logarithmic, Exponential, and Oth

October 20, 2023

< 行

< ∃⇒

Example 6 (Comparing integration problems)

Find as many of the following integrals as you can using the formulas and techniques you have studied so far in the text.

a.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}}$$
 b. $\int \frac{x\,\mathrm{d}x}{\sqrt{x^2-1}}$ **c.** $\int \frac{\mathrm{d}x}{\sqrt{x^2-1}}$

Example 7 (Comparing integration problems)

Find as many of the following integrals as you can using the formulas and techniques you have studied so far in the text.

a. $\int \frac{\mathrm{d}x}{x \ln x}$ **b.** $\int \frac{\ln x \, \mathrm{d}x}{x}$ **c.** $\int \ln x \, \mathrm{d}x$

ヘロト 不得下 イヨト イヨト 二日